

D6.6 Personalisation considering illuminant colour in viewing environment

Grant Agreement nr	761544
Project acronym	HDR4EU
Project start date (duration)	July 1st 2017 (36 months)
Document due:	31/12/2019
Actual delivery date	31/12/2019
Leader	UPF
Reply to	marcelo.bertalmio@upf.edu
Document status	Submission Version

Project funded by H2020 from the European Commission

HDR4EU

Project ref. no.	761544		
Project acronym	HDR4EU		
Project full title	Enabling end-to-end HDR ecosystem		
Document name	D6.6 Personalisation considering illuminant colour in viewing environment		
Security (distribution level)	Confidential		
Contractual date of delivery	31/12/2019		
Actual date of delivery	31/12/2019		
Deliverable name	Personalisation considering illuminant colour in viewing environment		
Туре	Report		
Status & version	Submission Version		
Number of pages	15		
WP / Task responsible	WP6 / UPF		
Other contributors			
Author(s)	Trevor Canham, Marcelo Bertalmío		
EC Project Officer	Mr. Rapolas Lakavicius, Rapolas.LAKAVICIUS@ec.europa.eu		
Abstract	Experiment conducted identifying the degree to which observers adapt to the white point of natural images on an emissive display versus the color of ambient illumination in the room		
Keywords	Chromatic adaptation, natural images, ambient illumination		
Sent to peer reviewer	Yes		
Peer review completed	Yes		
Circulated to partners	No No		
Read by partners	No la		
Mgt. Board approval	No		

Document History

Version and date	Reason for Change
1.0 15/11/2019	Document created by Trevor Canham
1.1 05/12/2019	Version for internal review
1.2 31/12/2019	Submission version

Table of Contents

1	EXECUTIVE SUMMARY	4
2	2 INTRODUCTION	4
3	BACKGROUND	5
	3.1 Related Work	5
	3.2 Chromatic Adaptation	7
4	METHODS	8
	4.1 Procedure	10
5	5 RESULTS	11
6	5 CORRECTIVE MODEL	11
7	DISCUSSION	12
8	3 CONCLUSION	13
9	REFERENCES	14

1 EXECUTIVE SUMMARY

Chromatic adaptation considering competing influences from emissive displays and ambient illumination is a little studied topic in the context of color management in proportion to its influence on displayed image appearance. An experiment was conducted identifying the degree to which observers adapt to the white point of natural images on an emissive display versus the color of ambient illumination in the room. To investigate this, a series of images were first displayed under a reference condition, where observers were instructed to take notice of the quality of their achromatic and memory color regions. Then, the observers were asked to adjust them back to this color balance from memory as they were displayed again under varying environmental conditions. This was done using a one-dimensional white balance control, interpolating between the two achromatic reference points (ambient color and display white point).

The responses of observers were found to be general for the natural images tested and had no significant difference from those of a previous experiment which was conducted with roughly the same procedure and conditions on a drastically reduced viewing angle. A possible explanation for this could be that our adaptive processes maintain some consideration for the current environmental illumination (if any exists) whenever we view emissive displays, with little regard to the amount that the surround conditions intrude upon our field of view. Using these data and those of the previous experiment, a model is proposed to predict the degree of adaptation values reported by observers. This model has a form such that it could be reoptimized to fit additional data sets for different viewing scenarios and can be used in conjunction with a number of chromatic adaptation transforms.