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Abstract

An advanced characterization of the complicated dynamical system brain is one of science’s biggest challenges. Nonlinear
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ime series analysis allows characterizing nonlinear dynamical systems in which low-dimensional nonlinearity gives rise to
omplex and irregular behavior. While several studies indicate that nonlinear methods can extract valuable information from
euronal dynamics, others doubt their necessity and conjecture that the same information can be obtained using classical
inear techniques. To address this issue, we compared these two concepts, but included furthermore a combination of nonlinear
easures with surrogates, an approach that has been designed to specifically focus on nonlinearity. As a benchmark we used

he discriminative power to detect the seizure-generating hemisphere in medically intractable mesial temporal lobe epilepsy. We
nalyzed intracranial electroencephalographic recordings from the seizure-free interval of 29 patients. While the performance
f both linear and nonlinear measures was weak, if not insignificant, a very high performance was obtained by the use of
urrogate-corrected measures. Focusing on nonlinearity by using a combination of nonlinear measures with surrogates appears
s the key to a successful characterization of the spatial distribution of the epileptic process.
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1. Introduction

In recent years a localization of epileptic foci from
the electroencephalogram (EEG) recorded during the
seizure-free interval has been attempted using dif-
ferent time series analysis techniques. Time series
analysis comprises different concepts for an optimal
0920-1211/$ – see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.eplepsyres.2005.12.004
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characterization of different classes of dynamical sys-
tems. Measures derived from linear time series analysis
(LTSA (Box and Jenkins, 1976)) are most appropri-
ate for the description of systems in which cause and
effect are proportional. Well-known LTSA measures
are the delta-, alpha-, theta-, beta-, and gamma-band
power that are extracted from the power spectrum and
quantify the amount of activity in specified frequency
ranges. LTSA measures, however, are not sensitive
to certain properties specific to nonlinear determin-
istic dynamical systems. A characterization of non-
linear deterministic dynamics, in which stimulus and
response are related by other than linear relations, can
be achieved by means of nonlinear time series anal-
ysis (NTSA), the practical spin-off from the theory
of deterministic chaos (Kantz and Schreiber, 1997).
Prominent NTSA measures are the Lyapunov expo-
nent and the correlation dimension, designed to identify
chaotic behavior in deterministic dynamics and to esti-
mate their dimensionality. In early studies, evidence
for deterministic chaos in various neuronal dynamics
was derived from applications of these measures to the
EEG (Babloyantz and Destexhe, 1986; Frank et al.,
1990). However, it was soon demonstrated that NTSA
measures are sensitive to properties of nonlinear deter-
ministic dynamics without being very specific (e.g.
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al., 1997; Weber et al., 1998; Mormann et al., 2000;
Widman et al., 2000), or STSA (Casdagli et al., 1997;
Andrzejak et al., 2001a). Most of these studies achieved
promising results by rendering a correct localization
in a high percentage of cases. A comparison of the
performance of these different approaches, however, is
still missing and cannot be derived from these stud-
ies as they were carried out on different collectives of
patients and different types of epilepsy. Comparability
is furthermore diminished by the fact that some studies
were based on the analysis of surface EEG recordings
while others analyzed intracranial EEG. The aim of the
present study was therefore to carry out a comparison of
the different approaches, i.e. LTSA, NTSA, and STSA,
with regard to the discriminative power of the different
techniques for the detection of the focal hemisphere
in epilepsy patients from intracranial EEG recordings
during the seizure-free interval.

2. Methods

2.1. Patients and EEG recordings

The analyzed EEG signals were recorded from
29 epilepsy patients with medically intractable focal
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sborne and Provenzale, 1989), and the interpretation
f NTSA results obtained for some unknown dynamics
an be quite problematic (Kantz and Schreiber, 1997).
hese problems led to the development of the con-
ept of surrogate time series (Schreiber and Schmitz,
996, 2000), some roots of which can be found in the
ontext of the analysis of the EEG (Pijn et al., 1991).
ormally, surrogate time series allow testing whether
esults obtained from NTSA measures are consistent
ith the null hypothesis that the time series was mea-

ured from a linear stochastic dynamics. A combination
f NTSA measures with the concept of surrogates,
hich we will refer to as surrogate time series anal-
sis (STSA), can be expected to isolate the specific
onlinear features of the time series.

A number of studies investigated whether a local-
zation of the focal area can be obtained from seizure-
ree EEG recordings, using measures derived from
TSA (Nuwer, 1988; Panet-Raymond and Gotman,
990; Marciani et al., 1992; Wang and Wieser, 1994;
uunainen et al., 1995; Gambardella et al., 1995; Drake
t al., 1998), NTSA (Lehnertz and Elger, 1995; Pijn et
pilepsies undergoing invasive presurgical diagnostics
etween 1993 and 2000 at the Department of Epilep-
ology of the University of Bonn, Germany, by means
f intracranially implanted electrodes. We chose these
ata sets since they were recorded from patients with
classical” unilateral mesial temporal lobe epilepsy
MTLE) including signs of hippocampal sclerosis in
he MRI and ipsilateral seizure onset in the scalp EEG.
nvasive presurgical evaluation yielded electrographi-
al seizure onset in the depth electrode of the sclerotic
ippocampus in all cases. According to the current state
f the art in epileptology invasive EEG recordings are
o longer necessary in these classical cases of unilat-
ral MTLE since noninvasive diagnostics is considered
ufficient. The data sets were thus selected for their
omogeneity as opposed to the more complicated types
f epilepsy that still require invasive diagnostics nowa-
ays.

Selective amygdalohippocampectomy (18 left, 11
ight) led to post-operative complete seizure control
n all cases documented for at least 1 year (mean: 3.8
ears, range: 1–9 years). We retrospectively analyzed
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a total of 84 EEG recordings with an average length of
130 min per patient (range: 19–585 min). All record-
ings were performed prior to and independently from
the design of this study. During the recordings, patients
were awake and at rest. Recorded epochs as selected
by EEG technicians at the time of acquisition included
both the normal baseline EEG prior to medical taper-
ing as well as typical interictal activity for an indi-
vidual patient. Any data recorded during the pre-ictal
period (1 h before seizure) or post-ictal period (2 h after
seizure) as well as periods containing artifacts were dis-
carded. No other selection was carried out.

The EEG was recorded via intrahippocampal depth
electrodes (Fig. 1), each equipped with 10 cylindrical
contacts (length: 2.5 mm, intercontact distance: 4 mm).
These electrodes were implanted stereotactically via
the longitudinal axis of the hippocampus using an
occipital approach with the amygdala as target for the
most anterior electrode contact (cf. Van Roost et al.,
1998). After neurosurgical implantation, the correct
placement of the electrodes was verified by magnetic
resonance imaging. EEG recordings were performed
at a sampling frequency of 173.61 Hz using a 12 bit
analog to digital (A/D) converter and was band-pass
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filtered from 0.5 to 85 Hz (12 dB/oct.). Apart from
the approval by the local medical ethics committee,
informed consent for the study was obtained from all
patients.

2.2. Time series analysis

For each of the analysis concepts (LTSA, NTSA,
STSA) we chose four representative measures. As
LTSA measures we used the relative power in the delta-
band (DP (Niedermeyer and Lopes da Silva, 1999)),
i.e., the fraction of power contained in the frequency
range of 0.5–4 Hz, the decay time of the autocorrelation
function (DT (Box and Jenkins, 1976)), the skewness
of the amplitude distribution (SK (Box and Jenkins,
1976)), and the second statistical moment of the power
spectrum often referred to as Hjorth mobility (HM
(Hjorth, 1970)).

As NTSA measures we used the nonlinear predic-
tion error PE (Kantz and Schreiber, 1997; Andrzejak et
al., 2001b) and the local flow LF (Kantz and Schreiber,
1997; Andrzejak et al., 2001a). Based on different
approaches both of these statistics are designed as tests
for nonlinear determinism. Furthermore, we used an
effective correlation dimension CD (Grassberger and
Procaccia, 1983; Lehnertz and Elger, 1995) as an esti-
m
t
K
t
a
N
o
o
o
w
i
(
a
e
m
p
s

m
s
a
o

ig. 1. Scheme of bilateral intra-hippocampal depth electrodes, each
quipped with 10 cylindrical contacts. Electrodes were implanted
tereotactically via the longitudinal axis of the hippocampal forma-
ion using an occipital approach. After implantation, correct elec-
rode placement was verified using magnetic resonance imaging.
ate of the number of active degrees of freedom, and
he algorithmic complexity AC (Lempel and Ziv, 1976;
asper and Schuster, 1987) which is derived from

he theory of symbolic dynamics and can be regarded
s an estimate of the entropy of the dynamics. All
TSA measures used in this study require selection
f a set of parameters. In order to avoid any in-sample
ptimization, which would lead to an over-estimation
f the discriminative power of the NTSA measures,
e used the same parameters as in previous stud-

es of our group CD (Lehnertz and Elger, 1995), LF
Andrzejak et al., 2001a), PE (Andrzejak et al., 2001b),
nd AC (Mormann et al., 2005), for which these param-
ters were determined from pre-analyses carried out on
odel dynamics and on exemplary EEG segments. All

arameters along with detailed descriptions of all mea-
ures are provided in the Appendix A.

For each NTSA measure a corresponding STSA
easure was calculated as follows. For each EEG time

eries a set of nine surrogate time series was generated,
nd the NTSA measure was calculated for both the
riginal EEG and its surrogates. The STSA measure
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was calculated as the NTSA measure obtained for the
original time series minus the mean value obtained for
the set of surrogates (Schreiber and Schmitz, 2000). As
noted above, the surrogates’ distribution represents the
results that would be expected for a linear stochastic
process having the same power spectrum and ampli-
tude distribution as the original time series. Therefore,
subtracting the mean value of the surrogates’ distribu-
tion from the result obtained for the original can be
regarded as an offset correction, where the offset is
given by the linear properties of the dynamics. For the
formal definition of the STSA measures and details on
the algorithm used to generate surrogate time series,
refer to the Appendix A.

All recordings were analyzed using a moving win-
dow technique, with a segment length of 4096 samples
and 50% overlap of consecutive segments. The start-
ing point of each segment was slightly shifted in such
a way that the two ends of each window matched in
amplitude and in slope (Ehlers et al., 1998; Andrzejak
et al., 2001a,b). This was necessary since for the calcu-
lation of the discrete Fourier transform a time series is
implicitly assumed as one period of a continuous sig-
nal, and hence, discontinuities between the two ends
of an otherwise smooth signal would cause spurious
frequency components. This artifact would affect mea-
s
g
t
P
q
s
a
e

3

(
i
d
d
m
t
f
p
q

of each of the two electrodes. As illustrated for DP, LF
and S-LF, the resulting mean values exhibit a high inter-
patient variability as well as asymmetries with regard
to the focal and non-focal hemisphere (Figs. 2 and 3).
To evaluate the significance of these asymmetries we
applied an analysis of variance (ANOVA) using F-
statistics to the differences between mean values of the
left and right hemisphere along with the corresponding
sides of the focal hemisphere. If the analysis of vari-
ance resulted in a significant F-value, a discriminant
analysis was carried out (Fig. 3 and Table 1).

For the group of LTSA measures up to 83% of the
cases investigated here were correctly classified. In
contrast, the discriminative power of NTSA measures
for the focal hemisphere was rather poor (up to 72%
for CD) if not insignificant. A completely different pic-
ture, however, was established when surrogates were
used in combination with NTSA measures: the per-
formance of STSA measures was always higher than
the performance of the corresponding NTSA measures
and reached values of up to 93%. And even the weak-
est performer of the STSA group (S-PE with 86%) still
surpassed the overall best performer of the other two
groups (DP with 83%).

In earlier studies a correct lateralization of the focal
hemisphere was obtained in 20 out of 20 patients
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ures derived from the power spectrum and a proper
eneration of the surrogates. The required shifts were
ypically in the order of 1–2% of the segment length.
rovided that such small shifts are irrelevant for subse-
uent steps of analysis, as it was the case for the present
tudy, their use can replace windowing techniques that
re otherwise used to address the problem of end-to-
nd discontinuities.

. Results

Exemplary profiles of three representative measures
DP, LF and S-LF) calculated from one EEG record-
ng demonstrate a substantial variability over time and
ifferent contacts. These examples also illustrate the
egree to which values of LTSA, NTSA, and STSA
easures are correlated to each other (Fig. 2). For a fur-

her evaluation we carried out two steps of averaging:
or every patient, values were averaged over time com-
rising all recordings analyzed for this patient. Subse-
uently these values were averaged over the 10 contacts
ith temporal lobe epilepsy using the measure CD
Lehnertz and Elger, 1995), and in 25 out of 25 patients
ith mesial temporal lobe epilepsy using the ‘fraction
f nonlinear determinism’ (Andrzejak et al., 2001a),
measure closely related to S-LF. The performance

btained in the present study for CD and S-LF is
eaker. We attribute this discrepancy to the fact that

maller groups of patients and in particular smaller
amples of EEG recordings per patient were investi-
ated in Refs. (Lehnertz and Elger, 1995; Andrzejak
t al., 2001a), which may not represent an adequate
ample of MTLE patients.

Finally, we shall consider exemplary EEG time
eries to illustrate the influence of interictal epilep-
iform activity and nonstationarity on STSA values
Figs. 4 and 5). For EEG time series nonstationary fea-
ures are often caused by epileptiform activity: time
eries, which contain single isolated interictal epilep-
iform events, exhibit a nonstationary appearance (cf.
xamples 7–10 in Figs. 4 and 5). If, on the other hand,
hese interictal epileptiform events are recurrent and
requent in a given time series they can be regarded as
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Fig. 2. Color-scaled values of DP, LF, and S-LF for an exemplary EEG recording from a patient with right mesial temporal lobe epilepsy. Rows
denoted with L01-L10 and R01-R10 correspond to results obtained for the EEG recorded in the left and right hemisphere, respectively (cf.
Fig. 1). These profiles demonstrate the degree to which values of LTSA, NTSA, and STSA measures correlate: for both LF and S-LF, on average
higher values were calculated for contacts R01-R10 than for contacts L01-L10. Note in particular the local maximum for R06-R08 in values
of both measures around minute 10. A closer look, however, reveals also a number of outstanding differences: for instance, distinct high S-LF
values found for contacts L03-L10 for minutes 5, 9, 15, and 19 form patterns that cannot be found in the profile of LF values. Furthermore,
higher LF values for L01-L02, L08-L09, R01, and R05-R07 did not result in high values of S-LF for these contacts, but a comparable signature
can be found in the profile of DP values. Finally, rather few correlations can be found between the profiles of S-LF and DP.
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Fig. 3. Results of DP, LF and S-LF for all patients: mean values over time and over the 10 contacts of the electrodes of the focal and non-focal
hemisphere depicted by red and blue bars, respectively. Note in that all but five cases higher values of DP are obtained for the focal hemisphere.
While no such clear tendency is established for LF in all but two cases higher values of S-LF are obtained for the focal hemisphere.

intermittent but typical events of a stationary dynam-
ics. Accordingly, the time series can have an overall
stationary appearance (cf. examples 5–6).

Formally, the type of surrogates used for the cal-
culation of the STSA measures allows testing of the
null hypothesis that the time series was measured from
a stationary Gaussian linear stochastic dynamics by

means of a static and invertible measurement func-
tion. Since stationarity is explicitly included in this null
hypotheses it is often argued that high values of STSA
measures might simply reflect strong nonstationarity of
the dynamics. The given examples illustrate, however,
that nonstationarity is neither necessary nor sufficient
to cause high values of STSA measures (see Fig. 5).
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Table 1
An analysis of variance was used to test for a significant influence of the side of the focal hemisphere on the inter-hemispheric differences of
the particular measure

Measure F # % Diff.

LTSA
Delta power DP 18.6 24 83 Lower
Decay time DT 24.4 23 79 Lower
Skewness SK 8.2 21 72 Higher
Hjorth mobility HM 0.9 – – –

NTSA
Local flow LF 1.9 – – –
Prediction error PE 5.1 18 62 Lower
Correlation dimension CD 13.3 21 72 Lower
Algorithmic complexity AC 1.4 – – –

STSA
Surrogate-corrected local flow S-LF 27.5 27 93 Higher
Surrogate-corrected prediction error S-PE 12.4 25 86 Higher
Surrogate-corrected correlation dimension S-CD 19.1 26 90 Higher
Surrogate-corrected algorithmic complexity S-AC 13.6 26 90 Higher

A discriminant analysis was carried out for F-values higher than 2.7 (cf. second column). The resulting number and percentage of correct
classifications is given in the third and fourth column, respectively. Dashes are used for measures for which non-significant F-values were
obtained. Entries in the fifth column indicate whether higher or lower values of the respective measure were obtained for the focal hemisphere
in comparison with the non-focal hemisphere (cf. Appendix A).

While high STSA values can indeed be obtained for
clearly nonstationary time series (examples 9–10), they
can also be obtained for comparably stationary time
series (examples 3–6). Furthermore, zero STSA values
can be obtained for nonstationary time series (exam-
ples 7–8). A detailed discussion of this phenomenon is
given in the Appendix A. We report furthermore, that
recurrent epileptiform activity, which does not distort
the stationarity of the EEG (examples 5–6), is typi-
cally sufficient to cause high values of STSA measures,
but EEG time series which do not exhibit prominent
epileptiform events can also result in high STSA val-
ues (examples 3–4).

4. Discussion

Our results demonstrate a substantial advantage of
STSA over NTSA and LTSA techniques for the lat-
eralization or even localization of the epileptic focus
from interictal EEG recordings. In two aspects we do
believe in the generality of this conclusion. First we are
confident that analogous findings should be obtained
for other representatives of the three analysis con-
cepts. Furthermore, we expect that our findings can

be extrapolated to other types of epilepsy besides focal
mesial temporal lobe epilepsy and perhaps also to non-
invasive EEG recordings. In particular, cases of lesional
neocortical epilepsy could be studied to test whether
STSA measures are superior for a precise localiza-
tion of the focal area. Doubtlessly, different answers
might be obtained in the context of other problems
such as the prediction of epileptic seizures (Paluš et al.,
1999; Kugiumtzis and Larson, 2000; Mormann et al.,
2003; Andrzejak et al., 2003a; McSharry et al., 2003;
Li et al., 2003; Winterhalder et al., 2003; Mormann et
al., 2005; and references therein) or the investigation
of other pathological or physiological processes (Fell
et al., 1996; Shen et al., 2003; Micheloyannis et al.,
2003) Hence, the a posteriori conclusion that STSA
techniques are most suitable for a characterization of
neuronal dynamics in general cannot be drawn.

Although our STSA analysis was not primarily
designed as a hypothesis test, our results imply that
this null hypothesis would have been rejected more
often for the EEG recorded in the focal hemisphere
than for the non-focal hemisphere. A possible explana-
tion of this finding, which is in close agreement with
Casdagli et al. (1997) and Andrzejak et al. (2001a,b), is
that the epileptic process induces or enhances nonlinear
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Fig. 4. Exemplary EEG time series. Results for these time series are shown in Fig. 3. Ticks at the abscissa and ordinate are each distant by 1 s
and 100 mV, respectively.

deterministic structures in an otherwise linear stochas-
tic appearance of the EEG. There is, however, only little
direct evidence for this explanation, and it is important
to realize that there are numerous different reasons for
a rejection of the surrogates’ null hypothesis. In other

words, in general the complementary hypothesis is very
comprehensive and thus can be quite unspecific: non-
linear deterministic dynamics, a non-invertible mea-
surement function, a non-Gaussian random process,
non-stationarity of the underlying dynamical system.
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Fig. 5. Results for the exemplary EEG time series shown in Fig. 2. The numbering of the abscissa corresponds to the top-to-bottom order of the
examples in Fig. 2.

This list could be continued with many further aspects
not explicitly included in the null hypothesis and there
is not much reason to assume any of these alternatives
as more likely than the others. For a detailed discussion
of the caveats related to the application of surrogate
techniques, refer to Ref. (Schreiber and Schmitz, 2000;
Andrzejak et al., 2003b).

A clinician might take a more pragmatic point of
view by asking if a given analysis can render use-
ful information for diagnostic purposes. Indeed the
present study demonstrates that in particular STSA
techniques can extract valuable information from the
EEG of epilepsy patients. With a performance of up
to 93% correct lateralizations, these measures can pro-
vide valuable additional information during the presur-
gical evaluation, particularly in cases where findings

obtained by conventional diagnostics are inconsistent.
This view is in close agreement with results of Casdagli
et al. (1997), who were the first to consider the capabil-
ity of STSA techniques for epileptic focus localization
and who suggested that such techniques ‘may prove
useful in detecting epileptogenic foci during interictal
as well as ictal periods’. In this context it is important
to emphasize that our results were obtained solely from
the analysis of seizure-free intervals of the patients, i.e.
without the necessity of observing actual seizure activ-
ity. Although patients with unilateral hippocampal scle-
rosis nowadays are often operated without prior inva-
sive presurgical evaluation, there are still cases where
implantation of intrahippocampal electrodes becomes
necessary, e.g. patients with unilateral hippocampal
sclerosis and late bitemporal electrographical seizure
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onset in noninvasive EEG monitoring. In these cases
the proposed techniques could render additional diag-
nostic information. Furthermore it can be assumed that
the proposed techniques could also be applied to inva-
sive recordings obtained from neocortical epilepsies
(Andrzejak et al., 1999; Elger et al., 2000; Widman et
al., 2000). A particularly well-suited field of applica-
tion could be focus localization from grid electrodes in
nonlesional neocortical epilepsies.

An important issue with regard to the practical fea-
sibility of a certain technique in a clinical setup is the
computational expenditure. It needs to be pointed out
that the high performance of STSA techniques comes at
the price of long computation times. NTSA algorithms
are by orders of magnitude more time consuming than
LTSA algorithms. Moreover, for STSA techniques the
algorithm for the generation of surrogates and the need
to run NTSA algorithms repeatedly, namely, for the
original and the surrogate time series has to be taken
into account. However, thanks to the rapid development
of computer technology and the high performance of
distributed computing solutions (Müller et al., in press)
a real-time calculation of STSA measures for long-
term multi-channel EEG recordings becomes more and
more feasible in a standard clinical environment.

We conclude that nonlinear methods can be highly
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a geometrical representation of the dynamics in an
abstract d-dimensional state space by constructing a
time dependent state vector v(t) = (y1(t), . . . , yd(t)).
While the system evolves in time, the vector passes
through the state space along the so-called trajectory.
Each state of the system is represented by a point on
this trajectory and vice versa. Basis for time series
analysis, however, are scalar valued time series {xn}
derived from dynamical systems by means of some
measurement function xn = g(v(tn)) at n = 0,. . .,N − 1
discrete times. At a given sampling frequency fs, con-
secutive measurements are separated by one sampling
time: τs = 1/fs.

A.1. Linear time series analysis (LTSA)

The information contained in consecutive ampli-
tude values of a time series can also be encoded by
amplitudes and phases of harmonic oscillations with a
range of wavelengths or frequencies, respectively (Box
and Jenkins, 1976). The discrete Fourier transform, a
central concept of LTSA, translates between the two
underlying representations of the time domain and the
frequency domain. The discrete Fourier transform of
{xn} will be denoted as {sk} for k = −N/2,. . .,N/2, with
k = Nf/f for any given frequency f ≤ f /2. The peri-
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elevant and more effective than linear methods for a
haracterization of neuronal dynamics, provided that
hey are combined with surrogates. This characteriza-
ion might on the one hand yield valuable diagnostic
nformation. On the other hand it can advance our
nderstanding of the complicated dynamical system
rain.
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ppendix A

Assuming a dynamical system can be fully
escribed by d variables y1(t),. . .,yd(t), we can achieve
s s
dogram is given by the square of the amplitudes of
he Fourier transform: {pk} = {|s2

k|}. In this paper we
o not distinguish between the periodogram and the
ower spectrum and use the latter term for simplicity.
or real valued time series the power spectrum is sym-
etric with regard to positive and negative values of k,

nd hence we can simplify formulas in confining them
o positive values of k. In that way, the total power of
he time series reads P = ∑N/2

k=1pk. (For simplification
f a number of formulas we assume that the time series’
ean values are set to zero prior to analysis.)

.1.1. Delta power-DP
The delta power quantifies the fraction of power that

s contained within the frequency range between 0.5
nd 4 Hz, normalized by the total power:

P = 1

P

4 Hz∑
0.5 Hz

pk.

Therefore, high values of DP reflect a high fraction
f slow activity.
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A.1.2. Hjorth mobility-HM
Hjorth defined activity, mobility, and complexity as

‘a set of parameters intended as a clinically useful tool
for the quantitative description of an EEG’ (Hjorth,
1970). All parameters can be formulated and calculated
in the time or in the frequency domain, alternatively.
The mobility is defined as the variance of the distri-
bution of the local slopes normalized by the variance
of the amplitude distribution of the time series. In the
frequency domain the mobility is the second statistical
moment of the power spectrum normalized by the total
power:

HM = 1

P

0.5fs∑
0.5 Hz

pkk
2.

High values of HM are obtained for spectra with a
high fraction of fast activity.

A.1.3. Skewness-SK
Statistical moments describe different properties of

the amplitude distribution of a time series (Box and
Jenkins, 1976). The second and third moment are given
by the variance σ2 = 1

N−1

∑N−1
i=0 x2

i and by the skew-

ness χ = 1
N

∑N−1
i=0

(
xi

σ

)3, respectively. Note that the
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can be defined using the decay time:

DT = {τ|A(τ) < A(0)/e}min.

High values of DT reflect a slowly decaying auto-
correlation function.

A.2. Nonlinear time series analysis (NTSA)

While LTSA measures are calculated directly from
the time series or the power spectrum a number of
NTSA measures were designed to quantify differ-
ent properties of state space trajectories (Kantz and
Schreiber, 1997). Calculation of these NTSA mea-
sures therefore requires reconstruction of the state
space trajectory from the single valued time series.
This can be achieved by means of delay coordinates
zn = (xn,xn−τ ,. . .,xn−(m−1)τ) (Takens, 1980). Here τ is
the time delay and m is the embedding dimension.

A.2.1. Estimate of an effective correlation
dimension-CD

For deterministic dynamics an effective correlation
dimension allows to estimate the number of active
degrees of freedom (Grassberger and Procaccia, 1983).
To this purpose, the correlation sum that counts the
n
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d
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a

ariance is proportional to the total power of the time
eries. The skewness is zero for symmetric amplitude
istribution and non-zero values are obtained for asym-
etric amplitude distributions. Neglecting the direc-

ion of the asymmetry, which could be read from the
ign of the skewness, we here define:

K = |χ|.
High values of SK correspond to highly asymmetric

mplitude distributions.

.1.4. Decay time-DT
The autocorrelation function of a time series

Box and Jenkins, 1976) is defined as A(τ) =
1

(N−1)σ2

∑N−1
n=1 xnxn−τ for τ = 1,. . .,N − 1. Due to the

ormalization to the variance, A(0) = 1 holds by con-
truction. Provided that the time series is non-periodic,
he autocorrelation function decays from A(0) with
ncreasing values of the time lag τ, and fluctuates
round zero for larger τ-values. The slower A(τ) decays
nitially, the stronger are the linear correlations of the
ime series. Hence, an estimate of linear correlations
umber of pairs of points in state space that are closer
han a given hypersphere radius ε, is calculated as a
unction of ε:

(ε) = 1

(N − T )(N − T − 1)

N−1∑
i=0

×
N−1∑

j=i+T

Θ(ε − ‖zi − zj‖)

here ‖‖ indicates the maximum norm and Θ denotes
he Heaviside step function (Θ(a) = 0 for a ≤ 0 and

(a) = 0 for a > 0). The exclusion of pairs closer in
ime than the length of the so-called Theiler window T
s essential to reduce the unwanted influence of linear
orrelations on C(ε) (Theiler, 1986). The correlation
imension is defined as D2 = lim

N→∞ lim
ε→0

d(ε) where d(ε)

enotes the local slope d(ε) = ∂ln C(ε)
∂ln ε

. From the limites
t follows that the calculation of the correlation dimen-
ion would require an infinite length and an unlimited
ccuracy of the time series. However, an estimate of
n effective correlation dimension can be obtained if
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an almost constant value of d(ε) is found at least for a
range of ε values, the so-called quasi-scaling region.

Here we calculated d(ε) for embedding dimen-
sions m = 1 and m = 25 using a fixed time delay
(τ = 1τs) and Theiler window (T = 5τs). The range
of ε was chosen to match the resolution of the
analog-to-digital converter and was divided into
128 intervals. A quasi-scaling region [εl,εu]
is defined by εu = max{ε|d(ε)|m=1 > 0.975} and
εl = min{ε|d(εu)|m=25 − d(ε)|m=25|≤0.05d(ε)|m=25}.
If εu and εl existed and the number Nr of ε val-
ues in [εl,εu] was greater than 4, the estimate
CD = 1

N

∑εu
ε=εl

d(ε)|m=25 was computed. If no quasi-
scaling behavior was found for d(ε) or if CD ≥ 9.5,
an arbitrary but fixed value of CD = 10 was set. Low
values of CD should be obtained for finite dimensional
deterministic dynamics whereas high dimensional
stochastic dynamics should result in high values of
CD.

A.2.2. Nonlinear prediction error-PE
The unambiguous relation between present and

future states that characterizes deterministic dynam-
ics is reflected by the fact that corresponding state
space trajectories show no self-intersections. Further-
more, in the case of smooth deterministic dynamics,
w
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T
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prediction error is defined by

PE = RMS(ei,z̃i+H )

RMS(ei,z̄)

where RMS denotes the root mean square. For the
determination of the nearest neighbors a Theiler win-
dow (T = 25τs) was applied to the reference point and
also to the nearest neighbors: First, points were only
taken as nearest neighbors if their time index differed
by at least T from the time index of the reference point.
Second, if remaining points were closer to each other
in time than T, only the one nearest to the reference
point was included (Farmer and Sidorowich, 1988;
Andrzejak et al., 2001b). Low values of PE are obtained
for deterministic dynamics whereas high values of PE
are attained for stochastic dynamics.

A.2.3. Local flow-LF
For both the correlation sum and the nonlinear pre-

diction error all points on the trajectory are used sub-
sequently as the reference point for all other points.
Around this center either a number of points or a radius
is fixed to select points to be processed for further statis-
tics. A different approach is used for the calculation
o
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s
c
s
n
t
d
t
m
t
p
v
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A
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s
i

here similar present states lead to similar evolutions in
he near future, nearby trajectory segments are aligned
ith each other. In contrast, trajectories of stochastic
ynamics exhibit self-intersections and nearby seg-
ents can enclose arbitrary angles. This distinctive

eature of deterministic and stochastic dynamics is used
y the nonlinear prediction error (Kantz and Schreiber,
997; and references therein). After state space recon-
truction (m = 6, τ = 6), for each reference point zi the
= 5 nearest neighbors {zjs}s=1,...,k

were determined,
here js denotes the time index for each respective
eighbor. Based on the future evolution of these neigh-
oring points in state space, a prediction for the future
volution of the reference point was performed by cal-
ulating z̃i+H = 1

k

∑k
s=1zjs+H , where the prediction

orizon H was set to 65 sampling times. The dif-
erence between the predicted and the actual value
i,z̃i+H = |zi+H − z̃i+H | is the local prediction error.
he local prediction error for the mean of the time series

s ei,z̄ = |zi+H − z̄|. Here z̄ is a vector that carries the
ean of the time series in each of its components, i.e.

¯ = �0 for a demeaned time series. Finally, the nonlinear
f the local flow (Kaplan and Glass, 1992) that aims
t discriminating deterministic from stochastic dynam-
cs. For this technique the reconstructed m-dimensional
tate space is divided into bm non-overlapping hyper-
ubes where b denotes the number of hyper-cubes per
tate space axis. If the hyper-cube with index j is passed
j-times by the trajectory, a normalized tangent vec-
or vj,kis generated for each pass (k = 1,. . .,nj) whose
irection is determined by connecting the points where
he trajectory enters and leaves the hyper-cube. Sum-

ing up all vectors of passes through hyper-cube j,
he resultant vector Vj, normalized by the number of
asses nj, is Vj = 1

nj

∑nj
k=1vj,k. The expected absolute

alue for a vector addition of n vectors of unit length
ielded by a random walk in m dimensions is: R ∝ 1√

n
.

ccordingly, the following average is constructed over

ll occupied hyper-cubes: Λ = ∑
j

Vj
2−R2

1−R2 .
Using an embedding dimension of m = 6, the num-

er of hyper-cubes per state space axis was determined
mpirically from the range and the variance of the time
eries according to b = 0.875 max{xn}−min{xn}

σ2 , resulting
n values of b from 6 to 20. Rather than using a fixed
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time delay τ the local flow was calculated as

LF = 1

16

20∑
τ=5

Λ(τ).

High values of LF reflect deterministic dynamics
whereas low values of LF are obtained for stochastic
dynamics.

A.2.4. Algorithmic complexity-AC
Rather than using delay coordinates to reconstruct

the state space the time series was transformed into a
symbol sequence for the calculation of the algorithmic
complexity. For this purpose the range of amplitude val-
ues was partitioned, and a different symbol S is assigned
to each interval. Then each value of the time series is
replaced by the symbol of its interval. The thresholds
of the partition were chosen separately for each time
series to yield a homogenous distribution of symbols.
To achieve a good statistics as well as a good repre-
sentation of the time series, the number of different
symbols was set to A = 16.

The resulting symbol sequence {Si} with i = 1,. . .,N
was then investigated for its complexity by estimating
the size c({Si}) of its vocabulary. This size was defined
as the number of different words in a Lempel–Ziv pars-
i
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A
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d

A
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applied an iterative algorithm proposed by Schreiber
and Schmitz (Schreiber and Schmitz, 1996). Starting
from a random permutation of the original samples
of the time series, these surrogates are constructed by
an iterative algorithm that alternately adjusts the peri-
odogram and the amplitude distribution to the original
values, resulting in a deviation of the respective other
quantity. After a sufficient number of iterations (typi-
cally 20–200) deviations of both quantities from values
of the original time series are reduced to negligibly
small values. Hence, the surrogate time series will have
practically the same power spectrum and amplitude dis-
tribution as the original time series. In consequence,
any LTSA measures would have practically the same
result for the original time series and its surrogates.
In combination with NTSA measures, which are sen-
sitive to properties beyond the power spectrum and
amplitude distribution, these surrogates allow testing
the null hypothesis that the original time series was
measured from a stationary Gaussian linear stochastic
dynamics by means of a static and invertible measure-
ment function. If the NTSA measure for the original
deviates significantly from the distribution of the val-
ues obtained for the surrogates, this null hypothesis can
be rejected. For the interpretation of such a rejection,
which has do be done with care, refer to the discussion
i
2
w
a
t

S

S

S

S

a

ng (Lempel and Ziv, 1976) of the symbol sequence. In
his algorithm the symbol sequence is scanned from the
eginning to its end, and c({Si}) is increased by 1 unit
s soon as a new subsequence of consecutive symbols
s encountered in the scanning process (Kasper and
chuster, 1987) and the following symbol is regarded
s the beginning of the next symbol sequence. This
alue is normalized by the expected asymptotic value
or a random sequence of symbols of length N to yield
he algorithmic complexity:

C = logAN

N
c{Si}

Low values of AC are obtained for deterministic
ynamics whereas high values of AC reflect stochastic
ynamics.

.3. Surrogate time series analysis (STSA)

The concept of surrogates was developed to test a
pecified null hypothesis about the dynamics underly-
ng a time series under investigation. In our study we
n the body text and to Refs. (Schreiber and Schmitz,
000; Andrzejak et al., 2003b). In the present study
e use the surrogates not primarily as a means to test

gainst a null hypothesis, but rather as an offset correc-
ion by defining the STSA measures as

-LF =
{

LFEEG − LFSUR if LFEEG − LFSUR > 0

0 else

-CD=
{

CDSUR−CDEEG if CDSUR − CDEEG >0

0 else

-AC=
{

ACSUR−ACEEG if ACSUR − ACEEG >0

0 else

-PE =
{

PESUR − PEEEG if PESUR − PEEEG > 0

0 else

Here the over-bar denotes mean values obtained for
set of nine surrogates. For a stationary linear stochas-
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tic dynamics there should be no difference between
NTSA values for the original time series and the
surrogates. Accordingly, one should obtain S-LF ≈ 0,
S-CD ≈ 0, S-AC ≈ 0, and S-PE ≈ 0. For a nonlinear
deterministic dynamics, values of LF should be higher
for the surrogates, and values of CD, AC, and PE
should be lower for the surrogates. (Recall that a linear
stochastic dynamics results in low values of LF and in
high values of CD, AC, and PE.) For the sake of intu-
itiveness and homogeneity we therefore introduced the
pre-factor of (−1) in the definitions of S-CD, S-AC,
and S-PE. Defined in this way, all four STSA mea-
sures attain positive values for nonlinear deterministic
dynamics and values close to zero for linear stochastic
dynamics.

Note that the surrogate null hypothesis test is two-
sided. The value of an NTSA measure such as LF
obtained for the original time series can be higher than
the mean value obtained for the surrogates, resulting
in non-zero values of the corresponding STSA mea-
sure S-LF, but it can also be lower. In our experience,
this latter event occurs particularly often for distinc-
tively nonstationary time series (cf. Andrzejak et al.,
2001b). In order to reduce the influence of nonstation-
arity on our results, we therefore deliberately set the
STSA measures to zero in this case (corresponding to
t
S

R
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