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Indications of nonlinear deterministic and finite-dimensional structures in time series
of brain electrical activity: Dependence on recording region and brain state
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We compare dynamical properties of brain electrical activity from different recording regions and from
different physiological and pathological brain states. Using the nonlinear prediction error and an estimate of an
effective correlation dimension in combination with the method of iterative amplitude adjusted surrogate data,
we analyze sets of electroencephalogragBEG) time series: surface EEG recordings from healthy volunteers
with eyes closed and eyes open, and intracranial EEG recordings from epilepsy patients during the seizure free
interval from within and from outside the seizure generating area as well as intracranial EEG recordings of
epileptic seizures. As a preanalysis step an inclusion criterion of weak stationarity was applied. Surface EEG
recordings with eyes open were compatible with the surrogates’ null hypothesis of a Gaussian linear stochastic
process. Strongest indications of nonlinear deterministic dynamics were found for seizure activity. Results of
the other sets were found to be inbetween these two extremes.

DOI: 10.1103/PhysReVvE.64.061907 PACS nuner87.19.La, 05.45-a, 05.45.Tp, 87.19.Xx

[. INTRODUCTION [23], depressiori24], and schizophrenig25] mostly during
cognitive activity and in comparison against healthy control
The theory of deterministic chaos deals with complex dy-subjects. In particular, recordings from epilepsy patients have
namical systems that are characterized by the fact that thegften attracted researchers’ attenti@26—41. This is due
can be rather simple to describe, e.g., by a set of nonlinedp outstanding features of actual seizure activity and, more-
differential equations, but can show a complicated, often eroVer, to the medical indication to perform recordings inva-
ratic, temporal evolutior{1]. Nonlinearity as a necessary Sively in epilepsy patients, which offers a unique view of the
condition for such chaotic behavior is present in many dy-dynamical system human brain. _
namical systems found in nature. For a neuronal network Interpretations of results ranged from “evidences for cha-

such as the brain, nonlinearity is introduced even on the cefliC attractors™ underlying the alpha rhythfT], sleep re-

lular level, since the dynamical behavior of individual neu—Cprd'ngS[ll]‘ or epileptic seizuref33,35,4, to the conclu-

rons is governed by threshold and saturation phenomeng!on that EEG data of healthy volunteers *may be more

. ) : . appropriately modeled by linearly filtered noisel’s]. In be-
Morepver, the hypo'the5|§'of an entirely stocha§t|c brain Calveen these two extremes, authors concluded significant in-
be rejected due to its ability to perform sophisticated CO9Nyications of nonlinearity but no indication of low dimension-

tive tasks. For these reasons, the electroence_phalogragﬁty or determinisn{3—5,8,13. Besides the aim of finding a
(EEG) appears to be an appropriate area for nonlinear tim@etain dynamical model for the EEG, it was furthermore
series analysisNTSA) techniques, the practical spin-off jnyestigated if relative changes of the calculated quantities
from the theory of deterministic cha¢g]. ~ are capable of differentiating between different physiological
The structure of the brain, however, is highly compli- prain state§14,15,17, increasing insight into brain dysfunc-
cated. Furthermore, the EEG always results from a huggon [9,16,21-2% or even of yielding information useful for
number of individual neurons, each interacting with itsdiagnostic purposef26,28—30,3%4 The anticipation of im-
neighboring neurons as well as with remote neurons whosgending epileptic seizures is a further challenging aspect that
electric potentials are not included in the measurement. It isvas investigated by a number of studjg84,36—39.
therefore questionable whether EEG time series, particularly Nevertheless, it remains uncertain whether the aforemen-
those of short duration, can carry enough information to retioned varying results indeed reflect different dynamical fea-
veal dynamical properties of the underlying system braintures of brain electrical activity, or whether they must instead
Many studies are known from the literature in which NTSAbe attributed to differences in parameters of the respective
techniques were applied to different kinds of EEGs fromalgorithms and recording setups. Thus the aim of our study is
humans, such as recordings from healthy volunteers at regd compare dynamical properties of brain electrical activity
[3-10], sleep[11-13, during periods of cognitive activity from different extracranial and intracranial recording regions
[14-17, under the influence of low doses of ethafit] or  and from different physiological and pathological brain
anesthetics[19], or from patients with diseases like states, using fixed analysis parameters. Apart from the differ-
Alzheimer’s[16,20, Parkinson’s[21,22, Creutzfeldt-Jakob ent recording electrodes used for extracranial and intracranial
EEG registration, all other recording parameters were fixed.
Some of the morphological characteristics of the different
*Electronic address: ralphandrzejak@yahoo.de EEG time series under investigation, which are obvious to an
Electronic address: klaus.lehnertz@ukb.uni-bonn.de expert’s eye, will be sketched in the following.
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EEG time series recorded extracranially during the re-
laxed state of healthy subjects with eyes closed show a pre-
dominant physiological rhythm, the so-called alpha rhythm
in a frequency range of 8—13 Hz, an activity which is most
pronounced at the back of the hdd@]. In contrast, broader
frequency characteristics are obtained for open eyes. EEG
time series are also recorded intracranially in humans, how-
ever only in the framework of a presurgical evaluation of
focal epilepsies. In this context the implantation of electrodes
is carried out to exactly localize the seizure generating area
which is termed the epileptogenic zof#3]. During a sei-
zure free interval the EEG recorded from within the epilep-
togenic zone is often characterized by intermittent occur-
rences of so-called interictal epileptiform activities.
Investigation of these steep, sometimes rhythmic high ampli-
tude patterns in EEG recordings contributes to a localization
of the epileptogenic zone. Fewer and less pronounced inter- FIG. 1. Scheme of the locations of surface electrodes according
ictal epileptiform activities can be found at recording sitesto the international 10-20 system. Names of the electrode positions
distant from the epileptogenic zone. Finally, the EEG re-are derived from their anatomical locations. Segments of sets A and
corded during epileptic seizures, termed ictal activity, is al-B were taken from all depicted electrodes.
most periodic and of high amplitude, resulting from hyper-
synchronous activity of large assemblies of neurons. tained only activity measured during seizure free intervals,

We tested indications of deterministic and/or low- set E only contained seizure activity. Here segments were
dimensional structures in the aforementioned EEG time seselected from all recording sites exhibiting ictal activity.
ries against the null hypothesis that these properties are com- All EEG signals were recorded with the same 128-
patible with a Gaussian linear stochastic and stationarghannel amplifier system, using an average common refer-
process that was passed through a monotonic static but ence[omitting electrodes containing pathological activi€y,
possibly nonlinear measurement function. To this end, a norD, and B or strong eye movement artifadid and B)]. After
linear prediction errof44] and an estimate of the correlation 12 bit analog-to-digital conversion, the data were written
dimension[45] were calculated in a reconstructed state spaceontinuously onto the disk of a data acquisition computer
[46] for both the original EEG time series and an ensemblesystem at a sampling rate of 173.61 Hz. Band-pass filter
of surrogate time seriegt7]. To reduce the probability of settings were 0.53—40 HA2 dB/oct). Exemplary EEGs are
rejections of this null hypothesis, due solely to nonstationardepicted in Fig. 3.
ity, EEG segments were chosen under an inclusion criterion
of weak stationarity. B. Steps of analysis

1. Surrogate time series
Il. METHODS ) ) _ )
For each time series= 39 surrogate time series were gen-

A. Data selection and recording techniques erated using the technique of Schreiber and Schiuif.

Five sets(denoted A—E each containing 100 single- This iterative amplitude adjusting scheme results in surro-
channel EEG segments of 23.6-sec duration, were composé@tes that consist of the original sample values and have
for the study. These segments were selected and cut out froRPWer spectra “practically indistinguishablef47] from
continuous multichannel EEG recordings after visual inspecthose of the original time series. The underlying null hypoth-
tion for artifacts, e.g., due to muscle activity or eye move-
ments. In addition, the segments had to fulfill a stationarity
criterion described in detail in Sec. Il B. Sets A and B con-
sisted of segments taken from surface EEG recordings tha
were carried out on five healthy volunteers using a standard
ized electrode placement schere. Fig. 1). Volunteers
were relaxed in an awake state with eyes offghand eyes
closed(B), respectively. Sets C, D, and E originated from our |
EEG archive of presurgical diagnosis. For the present study
EEGs from five patients were selected, all of whom had gig 2. scheme of intracranial electrodes implanted for presur-

achieved complete seizure control after resection of one Qfical evaluation of epilepsy patients. Depth electrodes were im-
the hippocampal fOI’mationS, which was therefore Correctlxﬂanted symmetrica”y into the hippocampa| forman(m'[m) Seg_
diagnosed to be the epileptogenic zdok Fig. 2. Segments  ments of sets C and D were taken from all contacts of the respective
in set D were recorded from within the epileptogenic zonedepth electrode. Strip electrodes were implanted onto the lateral and
and those in set C from the hippocampal formation of thebasal regionémiddle and bottornof the neocortex. Segments of set
opposite hemisphere of the brain. While sets C and D conk were taken from contacts of all depicted electrodes.
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(wherex denotes the mean of the respective subsegnaaiait
the center frequency
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c (where S denotes the amplitude of the Fourier transform of
| the respective subsegmgntere calculated. The fluctuation
‘ of these properties among subsegments was quantified using
d the average deviations
12 —
Fr=— 2 mf—m, 3
ni=1
e
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F“’=ﬁ E |mj’—m®], (4

1seC mum
) ) ] where the overbar denotes mean of all 16 subsegments. As
FIG. 3. Exemplary EEG time series from each of the five setS4n inclusion criterion. bothE® and F* of the original time
From. top to bottom: set A to Set.ﬁjemted E.EG_a. to EEG= series were required to range within the distribution calcu-
Amplitudes of surface EEG recordings are typically in the order OL]ated from the respective surrogate ensemble, i.e., both val-

mewV. For intracranial EEG recordin mpli ran roun . .
somexV. For intracrania G eco dings amplitudes range arou ues must neither exceed the maximum nor fall below the
some 100uV. For seizure activity these voltages can exceed . L

minimum of the surrogate distribution.

1000 wV.

esis is that the time series is compatible with a Gaussian 3. Estimate of an effective correlation dimension

linear stochastic and stationary process measured by a static Using delay coordinates;=(X; X4, - . . Xi+(m—1)7)
and monotonic, possibly nonlinear, function. Since disconti{46] and the correlation sum
nuities between the end and beginning of a time series are

known to cause spurious spectral frequency components, 2 N-1 N-1
segments of 4396 samples were at first cut out of the record-C(e,N) = = N =T=1 > 2 0(e—[x—xl
ings. Within these longer intervals, the beginning of each of 1=0 j=i+T ®)

the final segments dil=4096 samples was then chosen in
such a way that the amplitude difference of the last and firs . - . .
data points was within the range of amplitude differences Oiwze(:)e ® _|sl\t;1e>l-(|)eat\;]|5|de St?pt. func(:jt_lorﬁ)(a_l) E’V_ajo
consecutive data points, and the slopes at the end and beg|.r—' d 4(12)5 a>0] the correlation dimensiol is de-
ning of the time series had the same sign. This algorith ined[45] by
avoids the use of window functions for a calculation of the

power spectrum. A comparable technique was applied in Ref. D= lim limd(e,N), ©6)

N—® -0

[18].
2. Weak stationarity criterion where
The probative force of a rejection of the surrogates’ null dlnC(e,N)
hypothesis for deterministic and/or low-dimensional struc- d(e,N)= e (7)

ture is limited, since stationarity is included in this null hy-

pothesis. On the other.hand, this partlcular property a”ow‘?:rom these definitions it follows that a true correlation di-
one to use surrogates in a test for nonstationarity. Here Whension cannot be calculated from time series of finite

propose such a test as a preanalysis step that eventually rIg'ngth and limited accuracy. An estimation of an effective

duces the probability of rejections of the null hypothesis duecorrelation dimension, however, can be obtained for those

to nonstationarities. : . . . . .
. . . me series where a quasiscaling behaviod @f,N) is found

vi dEEGir;g)mne_slegensoﬁgserr?;pﬁﬁtlviusbusr;oﬁ;?ée\ge{ﬁ NefCh dgft least for a limited range of the hypersphere radiys0].

—256). For - h sub mppt % n gth v ? d The applied steps of analysis and the choice of parameters

=256). For each subsegment{(1, . .. n) the average de- follow Ref. [36], and use the algorithm described in Ref.

viation of amplitudes [51]. With a fixed time delay t=1 sampling tim d(e,N)
N* was calculated for a range of embedding dimensioms (
mx:iE |Xi_;| (1) =1,...,25) using the maximum norm and applying a

N i3 Theiler window[52] (T=5 sampling timeps The range ok

061907-3



RALPH G. ANDRZEJAK et al. PHYSICAL REVIEW E 64 061907

was chosen to match the resolution of the analog-to-digitaparameter values reported were obtained from preanalysis
converter, and divided into 128 intervals. A “quasiscaling with regard to an optimum differentiation between nonlinear

region” [ g,,&,] is defined by deterministic and linear stochastic model systems. In order to
meet the requirements of the respective statistics, we chose
ey=maxe| d(&,N)jm=1>0.975, (8)  all parameters independently for bd®hand D ;.
er=min{e[ [d(ey,N)jm-25—d(&,N)m-24 5. Levels of null hypothesis testing - Statistical methods
<0.05d(&,N) |25} 9 All following steps of analysis were carried out fBr and

. . D, ,es- In the following, M stands for any of the two mea-
If &, and ¢, existed, and the numbeN, of ¢ values in  gyres. The null hypothesis was tested on two levels: on one

[1,84] was greater than or equal to 5, the estimate level for every individual EEG segment, and on a second
o level for each of the five sets of EEG segments. On the
i iy ; EEG ;
Do — d(e,N)_ 10 individual level the null was rejected M ranged outside
281N, 828, (&:N)im-25 (10 the distribution calculated from all of its surrogates

S _ . {MSUli-1...s} For a given set and measure, R, be the
was computed. If no quasiscaling existed oDifc1=7.2  number of rejections of the null hypothesis which were
~2 logN (cf. Ref.[53]), Dett Was set to an arbitrary value caused by the fact that ®E¢ was smaller than the minimum

of D,=10. of {MSYfi=1....s}. To rate a given number of rejections of the
) o null hypothesis, the probabilitp,;, to find R, or less re-
4. Nonlinear prediction error jections on a set o =100 time series just by chance was
For each reference poin¢ (i=1,... N—m7) in a re- calculated as
constructed state spadembedding dimensiomm=6 and
time delayr=8 sampling timesa fixed number K=5) of Rmin /1 1 \k 1 \nk
nearest neighborgx;}j—, . x was used to perform an Pmin= E (k) o1 1- o1 (15
H-step prediction: k=0 st st
— 1 In complete analogy, we calculated the probability., to
XitH™ | le Xj+H- (12) find R4« OF less rejections that were caused by the fact that
MEEG exceeded the surrogates’ maximum.
The difference between the actual ,; and predicted trans- ~ On the set level one surrogate per EEG segment was used.

In accordance with Ref3], values off MEE®} and{MSYR}

were used as paired observations for a nonparametric Wil-
(12) coxon signed rank test. In order to ensure that the choice of

D, did not influence results of the null hypothesis testing on

. ) —. the set level, the Wilcoxon test was carried out with different
The local prediction error for the mean of the time sexiés values ofD
u-

lation x; ,  is the local prediction error

€= Xien™ Xi sl

&ix=Xi+n—x, (13
o IIl. RESULTS
wherex is anm-dimensional vector that carries the mean in

each of its component. Finally the nonlinear prediction errorFi Flgustﬁr:n?aerii)zlgsthr:i:lstzlg gﬁ(g{rggg sEeE?nSérIzb;ic; 22’?5
(P) is calculated from 9. 9 '

On the individual level, sets E and D exhibited highest and
. second highesR,,, values for bothP and D,.¢;. For all
_ i (14) sets, the use oP led to higherR,,, values than the use of
R(&i ) ' D,e¢¢. This was particularly true for sets B and C, for which
the strongest discordance between the two measures was
whereR indicates the root mean square. For a nearest neigheund: while for P both R, values were significant, they
bor search for every reference poiqt, a Theiler window  were both nonsignificant fdD, .. Concordance was found
(T=25 sampling timeswas applied to its own trajectory only for set A: here none of the two measures led to signifi-
segment and to neighboring trajectory segments: In a firstant R, values. None of th&r,,,, values was significant.
step, vectors with indice$i—T, ...,i—1j+1,...j+T} Segments with rejection of the null hypothesis for bBtand
were discarded. In a second step, out of a group of neareft, . were found in sets D and E only.
neighbors passing the first step but closer to each other in For the vast majority of segment3,.¢s could not be
time thanT, only the one nearest tg was included. The calculated, and was therefore setig (cf. Table ). For sets
second step is important to ensure that information forthe A and B, this was the case for all EEG segments and almost
is gathered from multiple adjacent trajectory segments ratheall surrogates. Consequently, the null hypothesis on the set
than from only one trajectory segme(df. Refs.[48,49). level could not be tested usifd, ;. For set C, only a few
The prediction horizod was set to 65 sampling times. The segments resulted D, .¢r<D,, whereas most segments re-
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FIG. 4. Results for the exemplary EEG times series depicted in Fig. 3. From top to bottom: results for EEG-a to EEG-e. Left column:
PEEG and PSUR....s vs prediction horizorH. Circles markPEEC, Right column:d(e,N)EEC andd(e,N)SUR....s vs the logarithm of the
hypersphere radius for an embedding dimensiam=25. Diamonds marki(s,N)EE®. In addition,d(e,N)EE€ for embedding dimension
m=1 is given. Asterisks mark cases for which the null hypothesis was rejected. Note that for EEG-b there is a limited range of the
hypersphere radius for which d(s,N)EEC was below the surrogates minimum. Hence the null hypothesis could be rejected. Neither the
EEG nor the surrogate time series, however, resulted in a finite valids, gf, so that the null was not rejected f@r,q¢;. Only for
examples EEG-d and EEG-e valuesdf¢s could be estimated: 5.5 and 4.4, respectively.

sulted inD55=D3¢f=D,, and therefore entered the Wil- level could be rejected.

coxon test as binded observations. A noteworthy number of Using P set A was the only one for which we obtained a
DEEfo values was calculated only from EEG time series ofnonsignificantp; . value. For all other sets the null hypoth-
sets D and E. These sets were the only ones that resulted @sis could be rejected on the set level. Although decreasing

significantpy; . values, so that the null hypothesis on the setmean values of PEE¢ were found in the set order
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TABLE I. Results forP andD, .+ on the individual leve(rows 1 and 2 and 6 and &nd on the set level
(rows 3 and 4 and 8 and).9Values ofp,.x are not listed, since all were nonsignificant. Values in row 5
denote the number of segments for which a valueDgf; could be computed for the EEGs and the
surrogates, respectively. The last row contains the number of segments for which the null was rejected for
both measures. n.s.: valuespf 0.05 are assumed to be nonsignificanto Wilcoxon test was carried out
for sets A and B(see the body text

A B C D E
Rumin/Rinax 4/1 9/3 14/3 37/0 89/0
P Prmin n.s. <0.001 <0.001 <0.001 <0.001
Pwile n.s. 0.004 <0.001 0.001 <0.001
Zwilc -0.6 2.9 7.0 -35 -8.6
DSEFSUR<D, 01 0/1 717 2719 76/5
Runin/Rinax 0/0 0/0 01 17/2 56/0
Dety Pmin n.s. n.s. n.s. <0.001 <0.001
Pwilc X X n.s. <0.001 <0.001
ZWiIc X X -1.0 -3.7 -7.6
P& Dyt Rinin/Riax 0/0 0/0 0/0 10/0 40/0
A-C-B-D-E, smallest values were still found to be higher IV. DISCUSSION

than 0.5(cf. Fig. 5.

In summary, the null hypothesis of an underlying linear . : . . . :
stochastic and stationary process, measured by a static afigs _of brain _electrlcal_acmwty from dlﬁerent_extracranlal_
monotonic but possibly nonlinear measurement function a&nd intracranial recording regions and from different physi-
represented by the iterative amplitude adjusted surrogate8logical and pathological brain states. Despite the assumed
could be rejected for sets D and E for b@fandD, ;. For ~ nonlinear deterministic nature of neuronal dynamics, a qua-
sets B and C, only the use Bfled to a rejection, while these Silinear stochastic and high-dimensional appearance of the
sets appeared to be compatible with the nullBor;. SetA  EEG, as found for set A, consistent with results reported in
was the only set which was compatible with the null hypoth-Refs.[4,9,15, might originate from both the huge number of
esis for both measures. neurons included in an EEG measurement and the compli-

cated structure of the brain. Particularly for surface EEG

12 recordings, a further blurring of possible dynamical struc-
P —I - T . tures in the EEG is caused by filter processes due to different

. I _ I I I - conductivities of the skull and other intermediate tissue. Cer-
08[~

Our study showed clear differences in dynamical proper-

il
-

tain imposed constraints in dynamics, however, might de-
mask or further strengthen nonlinear deterministic traits of
neuronal dynamics. Results found withfor set B suggest
- that the closing of eyes might represent the imposing of such
. a constraint in dynamics resulting in the well-known physi-
ological alpha rhythm. For no segment of sets A and B, how-
ever, a conclusive indication of a finite dimension or even a
low dimension could be obtained. Therefore, a differentiation
of the conditions of eyes closed and eyes open, such as re-
= ported in Refs[14,16], could not be obtained. Regarding
these aspects, the results of our study are in agreement with
1 other studies carried out on surface EEG recordings of
healthy volunteer§3,5,6,8,13,18 where indications of non-
7 linearity but not of an underlying low dimensional structure
were found.

The strong indications of nonlinear deterministic struc-

FIG. 5. Results foP (upper panélandD.,.;; (lower panel for  tures found for set D were certainly often related to interictal
sets A—E. For every measure and set, circles depict the mean val@ileptiform activity, as also reported in Re{28,29. In
of {MEES}, and diamonds the mean value SYR}; bars on  SOme cases, however, NTSA measures might be capable of
symbols are given by the ranges of these distributions. Vertical line§l€tecting more subtle dynamical manifestations of the dis-
in between the symbols depict those value$/$tEC for which the ~ €ase epilepsy. This view was supported by a number of stud-
null hypothesis was rejected on the individual level by the fact thaies[26—28,30,34,4]1 all of which demonstrated a successful
MEEC was smaller than the minimum ¢MSURL...s}, localization of the epileptogenic zone during seizure free in-

7.2F
Daet 4 4

4 [ EE

set A B c D
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tervals, and the anticipation of seizures by analysis of multiage any further statistical analysis of the set level which as-
channel EEGs recorded from epilepsy patigi@$,36—-39.  sumes the sets to be homogeneous.

The results of these studies, as well as the present one, sug-Doubtlessly, sets under investigation exhibited distinct
gest that the pathological epileptic process imposes certaiinear properties described by power spectra and amplitude
constraints on neuronal dynamics. Even in the absence @fistributions. However, since these properties were shared by
seizure activity these constraints appear to be reflected Hii€ surrogates, they cannot account for results given here. It
nonlinear deterministic traits in the EEG, as suggested bys important, however, to point out that a rejection of the
results found for set D. Most prominently, however, this phe-Surrogates’ null hypothesis is only a necessary but not suffi-
nomenon was observed during seizure activitgt B. This cient criterion for nonlinearity. Surrogates that were used are

finding is in correspondence with previous studies on intreotationary by construction. Therefore, even if a simple sta-
cranial [29] and extracrania]9,37] recordings of epileptic tionarity inclusion criterion was used to select the EEG seg-

seizures. Theilef32] evena priori assumed seizure activity MENtS, nonstationarity as a cause of “false” positive rejec-
to be “undoubtedly nonlinear.” tions cannot be excluded. Since this stationarity test is based

When comparing extracranial and intracranial recording®" linear p_rqperties (_)f the timg_series, it can nei_ther be
locations, it is important to note that the latter integrate poighly sensitive nor highly specific for nonstationarities of

tentials over a much smaller steradian, i.e., fewer neurongonlinear dynamical systems. Nonlinear techniques calcu-

contribute to the measured potentials, which furthermore arit€d in & reconstructed state space such as the one proposed

less filtered as compared to extracranial recording locationd? Ref-[54] could help to overcome this shortcoming. Fur-
This might explain differences in results from sets A and c.thermore, Kugiumtzigs5] showed that although the iterative

An additional and not contradictory explanation might pe@mplitude adjusted surrogates are more consistent in repre-

given by the following. Set C was measured from brain re-S€Nting the given null hypothesis than older technidés,

gions which were proven to be nonepileptogenic but whicHhe remaining mismatch of linear correlations of the original

may nevertheless participate in secondary, nonautonomotj&ne series can still be relevant, and can cause false rejec-
epileptic processes initiated by the epileptogenic zone. tions of the null. Since these and other shortcomings weaken

The significant numbers of rejectiori®,;, on the indi- the p_ropatiye force of the applied methoc_i, we only use the
vidual level allow two different interpretations. On the one (€M indication rather thanevidenceof nonlinear determin-

hand, the sets could be assumed to have a certain distributidff!C Structures.
of some distinct dynamical property not included in the null

It has become a common point of view that values of an
hypothesis. Due to the limited sensitivity of the applied testestimate of the correlation dimension calculated from an un-
statistics for this very property, the individual null will be

known dynamical system cannot be taken as a true estimate
rejected only for segments in one tail of this distribution.

of a number of degrees of freedom. Particularly, our results

Differences ofR,,, values between sets could then be ex-J!vé no !nd|cat|0n of chgos in the underlying dynam|cal Sys-
plained by different centers and widths of these distributionst€™ Prain. In a way this is to be expected, since a purely
haotic behavior of brain functions would consequently im-

Given the respective calculation parameters used in ouf o i .
study, both higher values and a higher intergroup variability!y that our brains’ behavior is changed dramatically by each

of R, were found forP as compared t®,(;. A compari- and every arbitrary small input.
son between Refg4], and[8], as well as data reported in In accordance with other studies, our results show that an

Ref. [18] show analogous results. This could be interpretedr’l_pplic"’_ltion of NTSA measures to EEG_dy_n_amics offers in-
as a higher degree of sensitivity Bffor indications of dy- sights into the dynamical nature and variability of the system

namical structures in EEG time series. The contrary conclug;g'dAs a feedbacfk fc;]r NTSA’ comphcatg-d propertlgs_of
sion, i.e., a lower level of specificity, cannot of course be ynamics can further motivate one to improve existing

ruled out. methods and develop new methdég].

On the other hand, the sets could consist of different sub-
sets, each containing segments of different dynamical nature.
This idea was followed in Ref.8], where Stanet al. con- We are grateful to Wieland Burr, Thomas Kreuz, Thomas
cluded that their “study underscores the heterogeneous n&chreiber, and Guido Widman for useful discussions. This
ture[ ...] of the alpha rhythm from a dynamical point of work was supported by the Deutsche Forschungsgemein-
view.” This interpretation of different subsets would discour- schaft.
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