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Abstract—Channel output quantization to a smaller number
of outputs is modeled as a mismatched decoding problem. The
conditions that a mismatched decoding metric should satisfy in
order to represent an output quantizer are derived. In addition, a
mismatched decoding metric and hypothesis test that minimizes
the average error probability are found. It is shown that the
best possible mismatched decoder is equivalent to maximum-
likelihood decoding for the channel between the channel input
and the quantized output. This gives a class of mismatched
decoding problems where the mismatch capacity is known.
This result supports previous studies on quantizer design and
optimization over the quantized channel.

I. INTRODUCTION

One of the key issues in hardware implementation of
communication systems is quantization of the received channel
values, needed prior to any subsequent processing. In such
implementations, there is a trade-off between hardware com-
plexity (represented by the number of quantization levels) and
the error performance of the system. It is thus of interest to
use as few quantization levels as possible while maintaining
a desired error performance for a given transmission rate.
Apart from channel quantization, there are other applications
where quantization is relevant such as the implementation of
message-passing decoders [1] and the construction of polar
codes [2].

Quantization has been extensively studied in the literature.
Most studies have focussed on designing the quantizer based
on a given performance metric for the combined channel from
the input X to the quantizer output Z referred to as quantized
channel (see Fig. 1). Multiple design criteria related to the
quantized channel have been considered such as the cut-off
rate [3], [4], mutual information [5]-[8] or error exponent [9].

A recent example is [8] where maximum mutual infor-
mation quantizer design for discrete memoryless channels is
considered. It is shown that there is a deterministic quantizer
that maximizes the mutual information of the quantized chan-
nel. In addition, utilizing results from learning theory [10],
a separating hyperplane condition for the optimality of the
quantizer is obtained. For the special case of the binary-input
channels, an algorithm based on dynamic programming is
developed to find an optimal quantizer. For the non-binary
input case, different suboptimal approaches with polynomial
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Fig. 1: Coded communication over a discrete channel followed
by a quantizer and matched decoder to the quantized channel.

complexities have been proposed in the literature including

(11, [2], [13].

The problem of decoding when the metrics are constrained
to take on values from a finite set (integrer values) are
investigated in [11], [12], which is motivated by practical
applications where the received signals and soft decoding
metrics need to be quantized. Generalized cut-off rate [11] and
mismatch capacity [12] are used as the performance measures
and the integer metric assignments which maximize these
criteria are designed. Except these few studies, most of the
previous literature consider the channel between the input and
the quantized output, and optimize the quantizer according to
a performance metric related to the quantized channel.

We find the mismatch decoding approach more natural, and
assume the quantizer as part of the decoder. In this case,
the decoder performs possibly suboptimal decoding due to
implementation constraints. This is precisely the definition of
mismatched decoding problem [14], [15]. The question under
investigation is whether there is anything to be gained by
using mismatch decoding approach or both approaches are
equivalent.

The main contribution of this paper is to study channel
output quantization from a mismatched decoding perspective.
We first derive conditions that the mismatched decoding
metric needs to satisfy in order to represent the channel
quantizer. Then, we derive a lower bound on the probability
of error where we find an optimal mismatched metric and
the corresponding test at the receiver. We show that the
best mismatched decoding coincides with maximum likelihood
decoding for the quantized channel, hence giving another ex-
ample of mismatched decoding where the mismatch capacity is
known. Our findings thus support previous results that consider
quantizer optimization over the quantized channel.
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Fig. 2: Coded communication over a discrete channel followed
by a mismatched decoder.

II. PROBLEM SET-UP

We consider one-shot communication over a discrete chan-
nel followed by a quantizer at the output, as shown in
Fig. 1. The message w, drawn equiprobably from the mes-
sage set W = {1,2,...,M}, is encoded onto X,, € X
which is received by the receiver as a random observation
Y ~ Py |x(y|z). The encoder and decoder share a codebook
C = {Xi,..., Xy} The channel input and output alphabets
are X and Y of cardinality |X’| and |Y|, respectively. At the
receiver side, a (possibly random) quantizer produces Z from
Y'; Z takes on values from finite alphabet Z with cardinality
|Z] = K. The quantizer is defined by set of probabilities
Qzy (z|y). The conditional probability of the quantizer output
given the channel input can be obtained as

Tz x(2]z) = Z Qzy (2|y) Py x (y|z). (1)
yey

The set-up considered here is general and includes the chan-
nels and quantizers with memory as well as standard mem-
oryless models. The majority of the literature considers a
specific form of the quantized channel as a combination of
the memoryless channel with single use transition probability
Pyix(y[x) with a single channel use quantizer Qzy(z]y) (We
use X, Y, z to denote single letter variables to differentiate from
one-shot notation). Specifically, they search for the quantizer
@* which is the solution of the following optimization problem

[51-[81,
Q" = argmax /(X 7) @)

where Q is the set of all possible quantizers. One-shot com-
munication problem considered here includes this special case.

We consider the quantizer as part the decoder (as shown
in Fig. 2) and assume that the receiver is designed to perform
suboptimal decoding. At the receiver, given the channel output
1y, an estimate of the transmitted message is formed based on
some function ¢(w, y) which is called the decoding metric (for
a fixed encoder with one-to-one mapping ¢(w,y) = q(x,y) as
in the standard form, although ¢(w,y) is more general). A
common way to obtain message estimate is using maximum
metric decoding as follows,

® = arg max q(w',y). 3)

When the decoding metric is not equivalent to that of the
optimal maximum likelihood decoder PY‘W, in the sense of
yielding an identical decision rule, it is said that the decoder is
mismatched [14], [15]. The decoder makes an error when its
estimated message is different from the one sent, i.e., W # w.

The mismatched decoding problem in its classical form
studies reliable communication over a given channel with a
given (possibly suboptimal) decoding rule. However, as we

will see in this paper, the quantizer imposes some restrictions
on the decoding metric.

III. MISMATCHED DECODING
A. Deterministic Quantizer

First we consider a deterministic quantization of the channel
outputs, i.e.,

Qzv(zly) €{0,1}, forall z € Z,y € Y, 4)

and derive a condition for the corresponding mismatched
decoding rule. Such a deterministic quantizer QQzy is a
mapping function Qzy : Y — Z that partitions the set
Y to K subsets {)1,..., Yk} such that Y; NY; = 0 and
Ule Y = Y and labels each partition ) with new symbol
zi. In other words, all the channel outputs y € ), are merged
to the quantizer output z, for all 1 < k < K.

Any decoding metric that does not discriminate between the
merged outputs represents a deterministic quantizer and vice
versa. This condition is stated concisely as follows.

Condition 1: A decoding metric represents a deterministic
quantizer @7y (with K quantized outputs) if and only if it
satisfies ¢(w, y) = qx(w) for all y € Yy, where the functions
g (w) have the property of gx(w) # cg;(w) for any constant
cand k # j.

Hence, overall there are K decoding metrics, gx(w) 1 <
k < K, and each metric function is used for all the channel
outputs in its corresponding subset V.

This condition does not specify any property for the de-
coding metric other than the merged outputs sharing the same
metric. Therefore, the mismatched decoding problem under
consideration is different from its classical form where the
decoding metric is fixed but at the same time can be more
general.

B. Randomized Quantizer

We now explore the properties that the mismatched de-
coding rule needs to satisfy in order to represent a general
randomized quantizer Q 7|y (z|y). We first split the random-
ized quantizer into two parts. The first part is a randomized
expansion of the channel outputs as follows

Yi = Uij Wp. Pyy (Uijlyi) = Qzy (2j]y:) for all 1 < j < K
)

and the second part is a deterministic quantizer as
Pyy (2l9i5) = L{k = j} (6)

where 1{.} is the indicator function. These variables form a
Markov chain as X —Y —Y — Z.

In order to illustrate this two-step representation, we con-
sider an example of a discrete channel with binary input
z and ternary output y and a randomized quantization to
binary labels z. Fig. 3 shows the randomized quantizer and
its counterpart as a combination of a randomized expansion
and a deterministic quantizer for this example.

The randomized expansion of channel outputs to the ex-
panded outputs ¥;; does not change the amount of information
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Fig. 3: (a) Randomized quantization from ternary outputs to
binary labels. (b) Equivalent model with randomized expan-
sion and deterministic quantizer.

about z, since the expansion probabilities are independent of
2 and hence decoding using y or ¥;; is equivalent. Following
Condition 1, a mismatched decoder with a decoding metric

q(w,¥ij) = qp(w) forall 1 <i < |Y|,j =k (7

represents a deterministic quantizer that merges all the virtual
outputs #;; with j = k since it has the property of using
the same decoding metric for all the merged virtual outputs.
Therefore, the mismatched decoding metric for the original
channel outputs y satisfies the following condition.
Condition 2: A decoding metric represents a randomized
quantizer () z|y if and only if it fulfills the following property

q(w,y) = qp(w) w.p. Qzy(zly) forall 1 <k < K. (8)

In other words, for each channel output ¥, the decoding metric
qr(w) is used with probability Q(zx|y). Note that Equation (8)
includes the deterministic quantizer as a special case.

IV. ERROR PROBABILITY
The decoder estimates the transmitted message as w given
the channel output y. It performs an M-ary hypothesis test
based on the mismatched decoding metric ¢(w,y) (8). The
conditional distribution' describing the decoder output has the
following form

K
Py (wly) = Z PW )Qz1y (2k|y), )
k=1

For the memoryless channel case with single channel use quantizer and
product form decoding metric of q(w,y) = Hl 1 q(xl7 yi), the conditional

distribution of (9) is PX\Y(mly) =11, Zk 1 Pk (xz)QZ‘y(zk\yi).

where va(w) is the probability that the decoder returns the
estimate w using the decoding metric function g (w), hence
Y wew PI’}/ (w) =1. We denote. the average error probability
of the decoder by G(PW\Y)' This probability is given by

(Pypy) 2 {W ” W] (10)
=1=) Pwy(w,y)Pyy(wly). (1D
w,y

Substituting (9) in (11) gives

K
(Piy) = 1= > Py (w,9)( 3 Ph(w)Qzy (auly)
k=1

w,y

12)

S-YY AW

(ZPWy(w,y)sz(Zk\y))

w k=1
(13)
K
_1—2213;; VP z(w, z1,). (14)
w k=1
Since >, oy W(w) = 1, the error probability in (14) can
be bounded as
K
e(Pyy) 21— Z%%Xpwz(w/,zk) (15)
=1- ZPWZ(w,z)PVI“/I/?ZP(w\Z). (16)

w,z
The equality in (15) is achieved by using a maximum metric

test with mismatched metric (8) where metric functions are
given by

a(w) = > Pwy(w,y)Qzy (zly) = Pwz(w, z). (17)
ISRy
The maximum metric test is described as
1 .
-, if w e Sy
PE (w) = { 15+ 18
W( ) {O, otherwise, (1%)

{w | Pwz(w,z) =

max,, Py z(w', zk)} The analysis shows that the best mis-
matched decoding which is based on utilizing metrics as (8)
and (17) is equivalent to the matched decoding for the quan-
tized channel. Furthermore, it shows that there is inevitable
loss due to the mismatch decoding and provides a way for
calculating the mismatch capacity.

where the set S, is defined as S, =

V. DISCUSSION

The above error probability analysis shows the equivalence
of the best mismatched decoder for the quantization problem
(using the metrics given in (8) and (17)) to matched decoding
over the quantized channel. It demonstrates that there is
an inevitable loss due to the quantization that can not be
compensated for with any encoding and decoding. This, in
turn, gives an example of mismatch decoding where the



mismatch capacity is known. The derivations in Section IV
show the equivalence of this problem to the matched decoding
over quantized channel and provides a way to calculate the
mismatch capacity. In addition, this supports previous results
that consider the quantized channel and design the quantizer
in order to optimize the communication rate over that channel.

A natural question to ask is whether there are other instances
of the mismatched decoding problem that would fall into
the same category and result in a trivial solution for the
mismatch capacity. Although we do not have the answer to
this question we study another example in the following that
is an interesting application of the derived result here.

Let us consider communication over a discrete memoryless
channel (DMC). For an equiprobably chosen message w
from the set W = {1,2,..., M}, the encoder maps it to a
codeword of length n denoted by x(w) € AX™. The corre-
sponding channel output sequence y is generated according to
Py x (ylx) = IT;=; Py|x (yilz:). We consider the suboptimal
decoder which selects the message maximizing the decoding
metric ¢(xz(w),y), ie.,

W = arg max g(2(w), y), (19)

where the metric ¢(x(w), y) depends only on first (n—1) out-
puts ignoring the last output, i.e., g(x(w), y) = g(x(w), y} )
where 37~ denotes the sequence of first n — 1 indexes of
output y. This can be interpreted as an instance of quantization
where all the output sequences that share the same first n — 1
symbols and only differ in the last index are merged to
the same quantizer output. In the following, we analyze this
example in a mismatched decoding framework and obtain a
decoding metric which minimizes the probability of error.
We study the probability that the decoder outputs a message
different from the one sent, i.e., P {W #* W} while using a

given codebook C = {x1,...,x }. Observing the output y,
the decoder outputs the message w with probability

o, ifwes
P (wly) = 4 5T 20
le( [v) 0, otherwise, 0
where the set S is defined as S = {w\q(m(w),y{"_l) =
max, g(x(w'),y ') ¢. Tt is clear that the probability
Py (wly) is independent of the n-th symbol of the output
Yns i€, Py (wly) = Py (w|y? ™). The average error
probability of the decoder is given by
P [W £ W} @1)
=1- Pxy(@(w),y) Py (wlyf ™) (22)
1
w,y
= 1= 3 [Pryyp (@07 @), 0 Py (w0l ™)
wyp !
x> Py, x, (ynlzn(w))|  (23)

Yn

=1— > Py @) (w), g1 )Py (wlyp ™)
1

w,yy
(24)
>1_ . n—1 ! n—1
>1 nz_lrrllugxP{Xy}l (2] (W), y7 ) (25)
Y1
=1— D Pryy (@ ) i PN (wlyf ),
w,yll*l
(26)

where {XY}7! is the short form for the X7~ 'y" "1,
The analysis shows that the metric q(z(w),y)

H?;ll Py x (yi|z;) which is the MAP metric for the first n—1

indices is the best possible mismatched decoding metric.
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