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Introduction
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A bit about my background
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PhD: EDF’s generation assets 
scheduling

Management and design of 
European Day-Ahead market 

algorithm (Euphemia)

I apply optimization and machine learning to power systems

Active management of 
distribution networks and 

hosting capacity computation 
(GREDOR project coordination)

Microgrids



A microgrid example
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Hydro-gen

SME 1

SME 2

BSS

SME 3

PV panels

With the support of the Wallon Government, in collaboration 
with Nethys, CE+T, Sirris, MeryTherm, SPI



A (grid-tied) microgrid offers many 
value creation mechanisms
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Function Description BSS*

Energy markets Decide on the price your are willing to pay/sell ++

Ancillary services Sell services to the grid ++

Peak reduction Through local and community optimization ++

UPS functionality Operate in islanded mode ++

Efficiency
Through optimized load and generation 
management

*BSS: Battery Storage System



Advantages for the public grid
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Function Description BSS*

Peak reduction / 
flow management

Momentarily set constraints to the microgrid ++

Voltage support Reactive power flexibility of battery storage and PV ++

Phase balancing Using storage DC buffer ++

Power factor 
correction

Flexibility of inverters ++

Frequency support Primary or secondary reserve ++

*BSS: Battery Storage System



A standard energy management system

• Energy monitoring 

• Fixed rules for storage 
operation
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A	standardmicrogrid	energy	management	system	…



A smart microgrid energy management system …

• exploits data to make the microgrid flexible, 
robust, and extract the maximum of value! 

• has a community management feature
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A	smartmicrogrid	energy	management	system!



Functional modules that exploit data
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Modules of the smart EMS

Monitoring

Analytics

Forecasting

State 
estimation

Operational 
planning

Real-time 
control

Energy 
Market 

participation

Reserve 
Market 

participation

Arrows imply a dependency, not a flow of information !

We also plan to implement a design / sizing tool based on 
these components 

Pull and 
store data

Present data, 
decisions and 

results

Calibrate 
models 

using data

Forecast 
consumption 

and production 
using past data

Take decisions 
for next day

Take decisions 
for next seconds

Participate 
actively in 

energy markets

Participate 
actively in 

reserve markets

Arrows indicate a dependency between 
functional modules, not a flow of information!



A combination of AI methods
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Discipline Description

Machine learning Deep neural nets for forecasting

Stochastic optimization
Mixed Integer Programming formulations of 
operational planning problems

Reinforcement learning Autocalibration of operational policies 

Model Predictive control For real-time battery management problem



Operational planning
• Optimize operation by anticipating on the 

evolution of load, generation and prices, taking 
into account the technical constraints of the 
microgrid 

• Typically with an horizon of one day 

• Important to plan the operation of storage 
systems, and other devices having a highly “time-
coupled” behavior such as flexible loads, or 
steerable generators 

• Islanded mode: take preventive decisions to 
maintain the power to critical loads as long as 
possible.
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Modules of the smart EMS

Monitoring

Analytics

Forecasting

State 
estimation

Operational 
planning

Real-time 
control

Energy 
Market 

participation

Reserve 
Market 

participation

Arrows imply a dependency, not a flow of information !

We also plan to implement a design / sizing tool based on 
these components 

Take decisions 
for next day



Real-time control
• Grid-tied mode:  

✦ implements operational planning decisions 

✦ corrects the error and dispatches among 
flexibility sources 

✦ manages storage systems to limit their 
degradation 

• Islanded mode:  

✦ monitors and dispatches flexibility sources 
to maintain system frequency 

✦ Dispatch of hybrid energy storage systems
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Modules of the smart EMS

Monitoring

Analytics

Forecasting

State 
estimation

Operational 
planning

Real-time 
control

Energy 
Market 

participation

Reserve 
Market 

participation

Arrows imply a dependency, not a flow of information !

We also plan to implement a design / sizing tool based on 
these components 

Take decisions 
for next seconds



Advanced energy/ancillary services market participation

• Optimal bidding in day-ahead market using 
anticipated load, generation, and prices. 

• Adjust energy exchanges in intra-day market 
to match changes in load, generation, and 
prices. 

• Exploit balancing opportunities by reacting to 
TSO’s signals. 

• Provide remunerated flexibility margins that 
the TSO can activate for balancing purposes.
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Modules of the smart EMS

Monitoring

Analytics

Forecasting

State 
estimation

Operational 
planning

Real-time 
control

Energy 
Market 

participation

Reserve 
Market 

participation

Arrows imply a dependency, not a flow of information !

We also plan to implement a design / sizing tool based on 
these components 

Participate 
actively in 

energy markets

Modules of the smart EMS

Monitoring

Analytics

Forecasting

State 
estimation

Operational 
planning

Real-time 
control

Energy 
Market 

participation

Reserve 
Market 

participation

Arrows imply a dependency, not a flow of information !

We also plan to implement a design / sizing tool based on 
these components 

Participate 
actively in 

reserve markets



Reinforcement learning for 
microgrid operation
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What’s the point?
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Modules of the smart EMS

Monitoring

Analytics

Forecasting

State 
estimation

Operational 
planning

Real-time 
control

Energy 
Market 

participation

Reserve 
Market 

participation

Arrows imply a dependency, not a flow of information !

We also plan to implement a design / sizing tool based on 
these components 

Merge these blocks



Example of application of reinforcement learning
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Deep Reinforcement Learning Solutions for
Energy Microgrids Management

Vincent François-Lavet v.francois@ulg.ac.be
David Taralla dtaralla@ulg.ac.be
Damien Ernst dernst@ulg.ac.be
Raphael Fonteneau raphael.fonteneau@ulg.ac.be
Department of Electrical Engineering and Computer Science, University of Liege, Belgium

Abstract
This paper addresses the problem of efficiently operating the storage devices in an

electricity microgrid featuring photovoltaic (PV) panels with both short- and long-term
storage capacities. The problem of optimally activating the storage devices is formulated
as a sequential decision making problem under uncertainty where, at every time-step, the
uncertainty comes from the lack of knowledge about future electricity consumption and
weather dependent PV production. This paper proposes to address this problem using
deep reinforcement learning. To this purpose, a specific deep learning architecture has
been designed in order to extract knowledge from past consumption and production time
series as well as any available forecasts. The approach is empirically illustrated in the case
of a residential customer located in Belgium.

1. Introduction
An electricity microgrid is an energy system consisting of local electricity generation, local
loads (or energy consumption) and storage capacities. In this paper, we consider microgrids
that are provided with different types of storage devices in order to be able to address both
short- and long-term fluctuations of electricity production using photovoltaic (PV) panels
(typically, batteries for short-term fluctuations, and hydrogen/fuel cells for long-term fluctu-
ations). Distinguishing short- from long-term storage is mainly a question of cost: batteries
are currently too expensive to be used for addressing seasonal variations. Energy micro-
grids face a dual stochastic-deterministic structure: one of the main challenge to meet when
operating microgrids is to find storage strategies capable of handling uncertainties related
to future electricity production and consumption; besides this, microgrids also have the
characteristics that their dynamics deterministically reacts to storage management actions.

In this paper, we propose to design a storage management strategy which exploits this
characteristic. We assume that we have access to: (i) an accurate simulator of the (deter-
ministic) dynamics of a microgrid and (ii) time series describing past load and production
profiles, which are realizations of some unknown stochastic processes. In this context, we
propose to design a deep Reinforcement Learning (RL) agent (Mnih et al. (2015)) for ap-
proximating the optimal strategy through interaction with the environment. The deep RL
algorithm proposed in this paper has been specifically designed to the setting which is origi-
nal in the sense that the environment is partly described with a deterministic simulator (from
which we can generate as much data as necessary), and partly with a limited batch of real
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François-Lavet, Vincent, et al. "Deep reinforcement learning solutions for energy microgrids 
management." European Workshop on Reinforcement Learning. 2016.



Use case: MG tries to work in high autonomy
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Public grid

PV panels

Battery

Loads

POI: Point of interconnection, also 
called point of common coupling (PCC)

POI +

Microgrid

Can exchange with the 
grid but at a high cost

H2 storage



Assumptions

• We assume that we have access to:  

✦ an accurate simulator of the dynamics of a microgrid 

✦ time series describing past load and production 
profiles, which are realizations of some unknown 
stochastic processes
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François-Lavet, Vincent, et al. "Deep reinforcement learning solutions for energy microgrids 
management." European Workshop on Reinforcement Learning. 2016.



Architecture of the deep neural net for learning  
the state-action value function Q(s,a)
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(i) a base case with minimal information available to the agent:
st =

⇥
[ct�hc , . . . , ct�1], [�t�hp , . . . ,�t�1], sMG

t

⇤

where hc = 12h and hp = 12h are the lengths of the time series considered as input to the
neural network (consumption and production respectively);
(ii) the case where information on the season is provided:

st =
⇥
[ct�hc , . . . , ct�1], [�t�hp , . . . ,�t�1], sMG

t , ⇣s
⇤

where ⇣s is the smallest number of days to the solar solstice (21st of June) which is then
normalized into [0,1];
(iii) the case where accurate production forecasting is available:

st =
⇥
[ct�hc , . . . , ct�1], [�t�hp , . . . ,�t�1], sMG

t , ⇣s, ⇢24, ⇢48
⇤

where ⇢24 (resp. ⇢48) is the (known) solar production for the next 24 hours (resp. 48 hours).

4.1 Neural network architecture
We propose a Neural Network (NN) architecture where the inputs are provided by the state
vector, and where each separate output represents the Q-values for each discretized action.
Possible actions a are whether to charge or discharge the hydrogen storage device with the
assumption that the batteries handle at best the current demand (avoid any value of loss
load whenever possible). We consider three discretized actions : (i) discharge at full rate
the hydrogen storage, (ii) keep it idle or (iii) charge it at full rate.

The NN processes time series thanks to a set of convolutions with 16 filters of 2 ⇥ 1
with stride 1 followed by a convolution with 16 filters of 2⇥ 2 with stride 1. The output of
the convolutions as well as the other inputs are then followed by two fully connected layers
with 50 and 20 neurons and the output layer. The activation function used is the Rectified
Linear Unit (ReLU) except for the output layer where no activation function is used.

Input #1

Input #2

Input #3

...

Fully con-

nected layers
Convolutions Outputs

Figure 1: Sketch of the structure of the NN architecture. The NN processes time series
thanks to a set of convolutional layers. The output of the convolutions as well
as the other inputs are followed by fully connected layers and the ouput layer.
Architechtures based on LSTMs instead of convolutions obtain close results and
the reader is welcome to experiment with the source code.

4.2 Splitting times series to avoid overfitting
We consider the case where the agent is provided with two years of actual past realizations
of (ct) and (�t). In order to avoid overfitting, these past realizations are split into a training
environment (y = 1) and a validation environment (y = 2). The training environment is
used to train the policy while the validation environment is used at each epoch to estimate

4

Time series of  
consumption, etc.

Value of decision to 
store in a given state 

of the microgrid

Convolutional layers to 
extract meaningful 
features from time series 

François-Lavet, Vincent, et al. "Deep reinforcement learning solutions for energy microgrids 
management." European Workshop on Reinforcement Learning. 2016.



Results: minimal information
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Results: with average PV production forecast
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Problem Statement
Goal: off-grid Microgrid management  

Control actions: 
• Storages  
• Generation 

Continuous and high dimensional space, with linear constraints 

Reduce the action space to: 
• on | off decisions for the generators 
• idle | charge | discharge decisions for the storages 

Define meta-actions 

 23



Test case

Storage decisions: idle | charge | discharge 

Meta-actions: 

• Charge if there is excess  

• Discharge if there is deficit 

• Generator covers the rest at a cost 

• Curtail the excess otherwise 

DQN for a day of data (Δt=1h)
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Preliminary results
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Total costs: 5.5 102$

Total costs: 4.3 102$



Conclusions

• Learning is achieved 

• Most of the time one action is preferable while the rest 
two have similar value 

• One day only for train and test so no idea about 
generalization  

• Open discussion for possibilities to model differently
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Microgrid benchmark 
development plan
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1. Add genset device

• Not energy-constrained 

• Costly  

• minimum stable generation 

• non-linear efficiency 

• Should be used when no renewable generation, and 
sometimes preventively to charge the battery if peak 
consumption is anticipated
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2. Make system multi-objective

• Minimize operation cost (current objective) 

• Maximize service level or served demand (reliability)
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3. Release a stable version of the simulator

• With current features  

✦ only storage and genset management 

✦ multi-objective 

✦ no price arbitrage 

• Provide benchmarks with several storage systems 
having different properties (e.g. Lithium, H2, flow-battery)  

✦ Different efficiencies, power/energy ratio, capacities 

• Document, further test before release, etc.

 30



4. Make system evolve over time

• New actions : device is added 

• Degradations of components, replacements 

✦ Modification of the transition function 

• … To be discussed depending on what you want to 
highlight
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5. Add grid interaction options

• Can buy / sell to the grid and price evolves with time 

• Peak consumption penalty 

• …
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6. Integrate electrical network model

• Import features from ANM benchmark 

✦ electrical grid model 

• means  

- system is more constrained (voltage range, 
thermal limits) 

- new actions may be necessary (generation 
curtailment, load shedding, reactive power 
production)
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Development plan (6 months)
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2018 2019

Oct. Nov. Dec. Jan. Feb. March

41 42 43 44 45 46 47 48 49 50 51 52 1 2 3 4 5 6 7 8 9 10 11 12 13

1 Add genset

2 Multi-objective

3
Release first 
version

1.0

4 System evolution 2.0

5 Grid interaction 3.0

6 Network model (API change) 4



How to make the environment 
evolve over its lifetime
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• What is a change of the environment 

✦ Change in action space : a new battery is available 

✦ Change in transition function / params (e.g. 
degradation) 

✦ Change in transition function / constraints (e.g. grid 
config) 

✦ How is evolution discovered by agent -> Is system 
partially observable
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Contact

Pr. Bertrand Cornélusse 

Smart microgrids – Montefiore Institute – Chaire Nethys 

Electrical engineering and computer science department
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